163 research outputs found

    Chronic Post-Concussion Neurocognitive Deficits. I. Relationship with White Matter Integrity.

    Get PDF
    We previously identified visual tracking deficits and associated degradation of integrity in specific white matter tracts as characteristics of concussion. We re-explored these characteristics in adult patients with persistent post-concussive symptoms using independent new data acquired during 2009-2012. Thirty-two patients and 126 normal controls underwent cognitive assessments and MR-DTI. After data collection, a subset of control subjects was selected to be individually paired with patients based on gender and age. We identified patients' cognitive deficits through pairwise comparisons between patients and matched control subjects. Within the remaining 94 normal subjects, we identified white matter tracts whose integrity correlated with metrics that indicated performance degradation in patients. We then tested for reduced integrity in these white matter tracts in patients relative to matched controls. Most patients showed no abnormality in MR images unlike the previous study. Patients' visual tracking was generally normal. Patients' response times in an attention task were slowed, but could not be explained as reduced integrity of white matter tracts relating to normal response timing. In the present patient cohort, we did not observe behavioral or anatomical deficits that we previously identified as characteristic of concussion. The recent cohort likely represented those with milder injury compared to the earlier cohort. The discrepancy may be explained by a change in the patient recruitment pool circa 2007 associated with an increase in public awareness of concussion

    White matter integrity related to functional working memory networks in traumatic brain injury

    Get PDF
    Objective: This study explores the functional and structural patterns of connectivity underlying working memory impairment after severe traumatic axonal injury. Methods: We performed an fMRI n-back task and acquired diffusion tensor images (DTI) in a group of 19 chronic-stage patients with severe traumatic brain injury (TBI) and evidence of traumatic axonal injury and 19 matched healthy controls. We performed image analyses with FSL software and fMRI data were analyzed using probabilistic independent component analysis. Fractional anisotropy (FA) maps from DTI images were analyzed with FMRIB's Diffusion Toolbox. Results: We identified working memory and default mode networks. Global FA values correlated with both networks and FA whole-brain analysis revealed correlations in several tracts associated with the functional activation. Furthermore, working memory performance in the patient group correlated with the functional activation patterns and with the FA values of the associative fasciculi. Conclusion: Combining structural and functional neuroimaging data, we were able to describe structural white matter changes related to functional network alterations and to lower performance in working memory in chronic TBI

    Vitamin C enhances NF-ÎşB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells

    Get PDF
    Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for effective activation of naïve T cells. DCs' immunological properties are modulated in response to various stimuli. Active DNA demethylation is crucial for DC differentiation and function. Vitamin C, a known cofactor of ten-eleven translocation (TET) enzymes, drives active demethylation. Vitamin C has recently emerged as a promising adjuvant for several types of cancer; however, its effects on human immune cells are poorly understood. In this study, we investigate the epigenomic and transcriptomic reprogramming orchestrated by vitamin C in monocyte-derived DC differentiation and maturation. Vitamin C triggers extensive demethylation at NF-κB/p65 binding sites, together with concordant upregulation of antigen-presentation and immune response-related genes during DC maturation. p65 interacts with TET2 and mediates the aforementioned vitamin C-mediated changes, as demonstrated by pharmacological inhibition. Moreover, vitamin C increases TNFβ production in DCs through NF-κB, in concordance with the upregulation of its coding gene and the demethylation of adjacent CpGs. Finally, vitamin C enhances DC's ability to stimulate the proliferation of autologous antigen-specific T cells. We propose that vitamin C could potentially improve monocyte-derived DC-based cell therapies

    White Matter/Gray Matter Contrast Changes in Chronic and Diffuse Traumatic brain Injury

    Full text link
    Signal-intensity contrast of T1-weighted magnetic resonance imaging scans has been associated with tissue integrity and reported as a sign of neurodegenerative changes in diseases such as Alzheimer's disease. After severe traumatic brain injury (TBI), progressive structural changes occur in white (WM) and gray matter (GM). In the current study, we assessed the signal-intensity contrast of GM and WM in patients with diffuse TBI in the chronic stage to (1) characterize the regional pattern of WM/GM changes in intensity contrast associated with traumatic axonal injury, (2) evaluate possible associations between this measure and diffusion tensor image (DTI)/fractional anisotropy (FA) for detecting WM damage, and (3) investigate the correlates of both measures with cognitive outcomes. Structural T1 scans were processed with FreeSurfer software to identify the boundary and calculate the WM/GM contrast maps. DTIs were processed with the FMRIB software library to obtain FA maps. The WM/GM contrast in TBI patients showed a pattern of reduction in almost all of the brain, except the visual and motor primary regions. Global FA values obtained from DTI correlated with the intensity contrast of all associative cerebral regions. WM/GM contrast correlated with memory functions, whereas FA global values correlated with tests measuring memory and mental processing speed. In conclusion, tissue-contrast intensity is a very sensitive measure for detecting structural brain damage in chronic, severe and diffuse TBI, but is less sensitive than FA for reflecting neuropsychological sequelae, such as impaired mental processing speed

    Neuroanatomical correlates of olfactory loss in normal aged subjects

    Get PDF
    In non-demented older persons, smell dysfunction, measured premortem, has been associated with postmortem brain degeneration similar to that of Alzheimer's disease. We hypothesized that distinct measures of gray and white matter integrity evaluated through magnetic resonance imaging (MRI) techniques could detect degenerative changes associated with age-related olfactory dysfunction. High-resolution T1-weighted images and diffusion-tensor images (DTI) of 30 clinically healthy subjects aged 51 to 77 were acquired with a 3-Tesla MRI scanner. Odor identification performance was assessed by means of the University of Pennsylvania Smell Identification Test (UPSIT). UPSIT scores correlated with right amygdalar volume and bilateral perirhinal and entorhinal cortices gray matter volume. Olfactory performance also correlated with postcentral gyrus cortical thickness and with fractional anisotropy and mean diffusivity levels in the splenium of the corpus callosum and the superior longitudinal fasciculi. Our results suggest that age-related olfactory loss is accompanied by diffuse degenerative changes that might correspond to the preclinical stages of neurodegenerative processes

    Disrupted White Matter Microstructure of the Cerebellar Peduncles in Scholastic Athletes After Concussion

    Get PDF
    Concussion, or mild traumatic brain injury (mTBI), is a major public health concern, linked with persistent post-concussive syndrome, and chronic traumatic encephalopathy. At present, standard clinical imaging fails to reliably detect traumatic axonal injury associated with concussion and post-concussive symptoms. Diffusion tensor imaging (DTI) is an MR imaging technique that is sensitive to changes in white matter microstructure. Prior studies using DTI did not jointly investigate white matter microstructure in athletes, a population at high risk for concussive and subconcussive head traumas, with those in typical emergency room (ER) patients. In this study, we determine DTI scalar metrics in both ER patients and scholastic athletes who suffered concussions and compared them to those in age-matched healthy controls. In the early subacute post-concussion period, athletes demonstrated an elevated rate of regional decreases in axial diffusivity (AD) compared to controls. These regional decreases of AD were especially pronounced in the cerebellar peduncles, and were more frequent in athletes compared to the ER patient sample. The group differences may indicate differences in the mechanisms of the concussive impacts as well as possible compound effects of cumulative subconcussive impacts in athletes. The prevalence of white matter abnormality in cerebellar tracts lends credence to the hypothesis that post-concussive symptoms are caused by shearing of axons within an attention network mediated by the cerebellum, and warrant further study of the correlation between cerebellar DTI findings and clinical, neurocognitive, oculomotor, and vestibular outcomes in mTBI patients

    Functional networks and structural connectivity of visuospatial and visuoperceptual working memory

    Get PDF
    Neural correlates of working memory (WM) in healthy subjects have been extensively investigated using functional MRI (fMRI). However it still remains unclear how cortical areas forming part of functional WM networks are also connected by white matter fiber bundles, and whether DTI measures, used as indices of microstructural properties and directionality of these connections, can predict individual differences in task performance. fMRI data were obtained from 23 healthy young subjects while performing one visuospatial (square location) and one visuoperceptual (face identification) 2-back task. Diffusion tensor imaging (DTI) data were also acquired. We used independent component analysis (ICA) of fMRI data to identify the main functional networks involved in WM tasks. Voxel-wise DTI analyses were performed to find correlations between structural white matter and task performance measures, and probabilistic tracking of DTI data was used to identify the white matter bundles connecting the nodes of the functional networks. We found that functional recruitment of the fusiform and the inferior frontal cortex was specific for the visuoperceptual working memory task, while there was a high overlap in brain activity maps in parietal and middle frontal areas for both tasks. Axial diffusivity and fractional anisotropy, of the tracts connecting the fusiform with the inferior frontal areas correlated with processing speed in the visuoperceptual working memory task. Although our findings need to be considered as exploratory, we conclude that both tasks share a highly-overlapping pattern of activity in areas of frontal and parietal lobes with the only differences in activation between tasks located in the fusiform and inferior frontal regions for the visuoperceptual task. Moreover, we have found that the DTI measures are predictive of the processing speed

    Urinary Arsenic Speciation in Children and Pregnant Women from Spain

    Get PDF
    Inorganic arsenic (i-As) is a non-threshold human carcinogen that has been associated with several adverse health outcomes. Exposure to i-As is of particular concern among pregnant women, infants and children, as they are specifically vulnerable to the adverse health effects of i-As, and in utero and early-life exposure, even low to moderate levels of i-As, may have a marked effect throughout the lifespan. Ion chromatography-mass spectrometry detection (IC-ICP-MS) was used to analyse urinary arsenic speciation, as an exposure biomarker, in samples of 4-year-old children with relatively low-level arsenic exposure living in different regions in Spain including Asturias, Gipuzkoa, Sabadell and Valencia. The profile of arsenic metabolites in urine was also determined in samples taken during pregnancy (1st trimester) and in the children from Valencia of 7 years old. The median of the main arsenic species found in the 4-year-old children was 9.71 lg/l (arsenobetaine—AsB), 3.97 lg/l (dimethylarsinic acid—DMA), 0.44 lg/l (monomethylarsonic acid—MMA) and 0.35 lg/l (i-As). Statistically significant differences were found in urinary AsB, MMA and i-As according to the study regions in the 4-year-old, and also in DMA among pregnant women and their children. Spearman’s correlation coefficient among urinary arsenic metabolites was calculated, and, in general, a strong methylation capacity to methylate i-As to MMA was observed

    IMAGINE study protocol of a clinical trial: a multi-center, investigator-blinded, randomized, 36-month, parallel-group to compare the effectiveness of motivational interview in rehabilitation of older stroke survivors

    Get PDF
    Background: Rehabilitation pathways are crucial to reduce stroke-related disability. Motivational Interviewing (MI), as a person-centered complex intervention, aimed to empower and motivate, and could be a resource to improve rehabilitation outcomes for older stroke survivors. The IMAGINE project aims to assess the impact of MI, as a complement to standard geriatric rehabilitation, on functional improvement at 30 days after admission, compared to standard geriatric rehabilitation alone, in persons admitted to geriatric rehabilitation after a stroke. Secondary objectives include assessing the impact of MI on physical activity and performance, self-efficacy, safety, cost-utility, participants' experiences and functional status at 3 months. Methods: We will conduct a multicenter randomized clinical trial in three geriatric rehabilitation hospitals in Spain. Older adults after mild-moderate stroke without previous severe cognitive impairment or disability will be randomized into the control or intervention group (136 per group, total N = 272). The intervention group will receive 4 sessions of MI by trained nurses, including the design of a personalized rehabilitation plan agreed between stroke survivors and nurses based on stroke survivors´ goals, needs, preferences and capabilities. Main outcome will be the Functional Independence Measure (FIM). In-hospital physical activity will be measured through accelerometers and secondary outcomes using validated scales. The study includes a process evaluation and cost-utility analysis. Discussion: Final results are expected by end of 2020. This study will provide relevant information on the implementation of MI as a rehabilitation reinforcement tool in older stroke survivors. A potential reduction in post-stroke disability and dependence would increase person's health-related quality of life and well-being and reduce health and social care costs. IMAGINE has the potential to inform practice and policymakers on how to move forward towards shared decision-making and shared responsibilities in the vulnerable population of older stroke survivors
    • …
    corecore